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We shall  consider  the following the rmos ta t i c  p r o b l e m s :  

Au = 0 in Di, u is = f ; (1) 

au=0  inDe, U l s = f .  (2) 

where  D i is an a r b i t r a r y  region bounded by a p iecewise  closed su r face  S; u(x) is the t e m p e r a t u r e  field; x 
= (xl, x2, x3); and D e is a region external  to the su r face  S. When the boundary condition is of the f o r m  ~u 
/~nls  = f, the p rob l em s  defined by Eqs .  (1) and (2) will be denoted by Eqs .  (la) and (2a). We p ropose  an i t e r a ,  
tion p r o c e s s e s  for  the solutions of the p rob l ems  defined by  E qs.  (1), (2), ( la),  and (2a), and der ive  approx i -  
mate  fo rmu la s  for  the t h e r m a l  r e s i s t a n c e  of a body of a r b i t r a r y  shape,  t t  is shown that the solution of Eq. 
(1) can be wri t ten  in the f o r m  

y dr, ~ (t) = ~tn , 
0 1__!__ 

u (x) = ~t(t) ~ n  t �9 4arxt n~=lim (t) (3) 
S 

where  rxt = ]x -  t], n t is the externa l  no rm a l  to the su r face  pass ing  through the point t; and/~n(t) can be c a l -  
cnlated by the following i te ra t ion  p r o c e s s :  

2f 2f 
, .+ ,  = B ~ , , , -  i ~ ;  ~'~ = - 1 ~ '  (4) 

f O 1 dr, B - -  A + al., Ap,=, ~t (t) Ont 2~rst ( 5 )  
l + a  s 

where  a > 0 is an a r b i t r a r y  number  which can be chosen so that the p r o c e s s  defined by Eq.  (4) converges  
as  fas t  as  poss ib l e .  Fo r  example ,  a = 4 /3  when S is a sphe re .  

The  solution of the p r o b l e m  defined by Eq. (la) subjected to the condition f f(s)ds = 0 (this condition 
s 

must  be  sa t i s f ied  if the p r o b l e m  is to have a solution) can be obtained f r o m  the fo rmula :  

, , ( 'a(t) dt 
u (x)= ~ ,  o (t) = lira on (t) , (6) 

,1 4~rxt n~ 
S 

where  on(t ) is found f r o m  

0 1 
an+l = -- On-~s " 2nrst on (t) dt + 2[, % = 2f. (7) 

S 

For  the e l ec t ros ta t i c  capac i tance  of a body (which dif fers  f r o m  the t h e r m a l  conductance of this body 
only by a numer i ca l  factor)  we have obtained the following approx imate  formula :  

 ,ds/-1 
C=4~/SI  2 [j,~ rts 1 , [Sl~mesS. (8) 

S S  

The solution of Eq. (2) can be obtained f r o m  the fo rmula :  

f 0 1 dr+ cr F = liml~n, (9) 
u (~ )  = ~, ( 0 ~  �9 4, , , - , , ,  T 2 i '  . - ,~  

S 
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where  

, _  , :o ,  
S 

and the constant a is obtained f rom the condition f #(t)dt = O. 
F 

The solution of the problem defined by Eq. (2a) is found f rom Eq. (6), in which or(t) is calculated f rom 
Eqs .  (4)-(5) with A replaced  by the opera tor  A*: 

A*(r = �9 1 a (t) a t .  (l  1) 
2r~rst 

S 

All the above i terat ion p roce s se s  converge at the ra te  of a geometr ic  p rogress ion .  

The approximate  fo rmula  for  the the rmal  r e s i s t ance  between two sur faces ,  S 1 and S o (S o surrounds  
St) is 

, l ;  
C --  IS*[ u(s)  d s - -  u(s)  d s ,  ( 1 2 )  

St 

where 

I 

u (x) = f.~o (t) -~ A*~ o (t) dr, a o (t) = 2 - ~  ] ' t C S,  , 
2 4nrxt (13} 

So-t-S, ( , I 

and is[ r e p r e s e n t s  the a r ea  of the sur face  8. The formula  given by Eq.  (8) was used on the Minsk-22 com-  
puter  to calculate  the capacitance of a unit cube. The resu l t  was C 1 = 0.64 which differs  f rom the published 
resu l t  C 1 = 0.65 by less  than 3%. We have also calculated the capacitance of a c i r cu la r  cylinder of length 
2L and radius  a for  L / a  ~- 0.1. The e r r o r  in the zero-or 'der  approximation did not exceed 0.03; C 1 = C/4~r. 

The foregoing leads us to conclude that the proposed i terat ion p roces se s  a re  v e ry  effective for  the 
numer ica l  and approximate analytic solution of problems in the rmos ta t i cs .  
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